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LETTER TO THE EDITOR 

Electrostatic charging of a fractal cluster and variable- 
range hopping in thin discontinuous metal films 

R D S Yadava 
Solid State Physics Laboratory, Lucknow Road, Delhi-110007, India 

Received 3 July 1989 

Abstract. It is argued that the capacitance of a fractal metallic cluster scales with its size as 
C - r c ,  where 0 < c < 1 is a new charging exponent. A new dimension d, is defined to 
characterise the electrostatically unshielded surface of the cluster. In effect, c = 2 - d + d, 
is obtained, where d is Euclidean dimension. Based upon this, and using cluster-size distri- 
bution from percolation theory, it is shown that the temperature dependence of the variable- 
range-hopping conductivity of discontinuous metal films is given by In u a  - l /Tx with x = 
1/(1 + c). The value of x is predicted to lie in the range 4-1, in close agreement with 
experiments. It is suggested that the cermet conductivities, which have x = 4, can also be 
explained within the framework of the present arguments. 

Thin metal films are discontinuous during early stages of their formation (typically below 
100 A). They consist of isolated metallic islands distributed randomly in space. With 
increasing thickness, the islands grow and coalesce until, at a critical thickness, a 
continuous metallic path is established. The transition from insulating to metalliccharac- 
ter at the threshold is a critical transition, and is very well described by percolation 
theory [ 1-41. Metal-insulator composite materials (called cermets) also exhibit a similar 
type of metal-insulator transition. In the insulating regime, the low-field DC conductivity 
of these systems exhibits a temperature dependence of the form 

In 0 cc - 1/T* (1) 
over a large temperature range (2 K < T < 300 K). The temperature exponent x s 1 
holds for discontinuous films and x = t for cermets [5-81. Considerable effort has been 
made in the past to explain the cermet behaviour [5-131. Some theories do predict an 
x = 4 dependence, although there is no unanimity in the basic arguments [6,9, 12, 131. 
This Letter is primarily concerned with the conductivity behaviour of discontinuous 
films, which is least understood so far, though in several respects it is similar to that of 
cermets. In addition, it is suggested that the cermet behaviour can follow as a special 
case of the general considerations here. 

It is generally accepted that the basic physics of conduction is essentially the one 
originally outlined by Nuegbauer and Webb [5]. According to their model, in thermal 
equilibrium a fraction of the metal islands are charged either by loosing or gaining an 
electron to or from a neighbouring, initially neutral, island. The charge transport occurs 
by thermally activated tunnelling from charged to neutral islands. Thermal activation is 
required because of the non-negligible energy change associated with the electrostatic 
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charging of metal islands during tunnelling. The charging energy of an island, E, = 
e2/2C, where C is its capacitance. In the past, it has invariably been assumed that the 
island capacitance, C, is proportional to its size r ,  i.e. C - r. This is certainly correct for 
metal particles having regular surface morphology. But for worm-like metal islands 
(clusters), typical of discontinuous films, this may be in gross error. In the following we 
first examine this point. 

It is now well known that the metal clusters near a metal-insulator transition are self- 
similar fractals, with tortuous morphology. Percolation theory describes their behaviour 
well [l-41. It is therefore pertinent to ask, how does the capacitance (and hence the 
charging energy) of a fractal cluster scale with its size? Consider the perimeter structure 
of a ramified (stringy) fractal cluster. It consists of a large number of ‘burrows’ or 
‘invaginations’ (see micrographs of Voss and co-workers [l]). The perimeter, t ,  of such 
a cluster is proportional to its area, s. The area scales with RMS radius r as s - r d f ,  
therefore, t - rdf where df is the fractal dimension of an individual cluster boundary (for 
Euclidean shapes of dimension d ,  d f  = d - 1). If a charge is given to such a cluster, the 
charge will distribute itself along the peripheral regions so as to produce zero field inside 
the cluster body. However, one can observe that the perimeter regions making up the 
inner boundaries of the invaginations are electrostatically shielded (like the inner surface 
of a hollow conducting sphere). The unshielded perimeter, tu, available for the charge 
distribution is only that which make up outer boundaries of the outward-extending ends 
(‘tips’ or ‘buds’). In general, tu 4 t. Like t ,  we assume that tu is also scaling, i.e., tu - 
rdc where d ,  is a new charging exponent. Obviously d, 4 df. For Euclidean shapes d, = 
df = d - 1. In case of highly ramified structures, when the boundary dimension df+ d ,  
we expect that d ,  --+ 0 for two-dimensional clusters and d ,  --+ 1 for three-dimensional 
clusters. The reason for this is that in the case where d = 2 the charge concentrated on 
the unshielded tips will be like a distribution of point charges in space, and in the d = 3 
case it will be like a distribution of line charges. Therefore, in general one can write that 
as d f+  d ,  dc+ d - 2. After a brief digression in the following paragraph, we will 
determine the capacitance on the basis of the above facts. 

A similar exponent, d,, was introduced earlier by Coniglio and Stanley [14] to 
describe the surface sites of an arbitrary fractal which are unscreened against trapping 
or the escape of a projectile having a different fractal dimension d,. They concluded that 
d ,  = (d ,  - 1) + (d  - d f ) / d p .  Their argument was based upon Hentschel’s [15] treatment 
of the growth of diffusion-limited aggregates (DLA). In DLA the deep invaginated peri- 
meter sites are not accessible to the random walker and their penetration depth l - 
r ( d - d f ) / d w  where d,  is the random-walk dimensionality. On a similar line of reasoning, 
one can define the electrostatic shielding distance 1, for fractal metal clusters also. 
This is the average distance from the outermost periphery up to which surface-charge 
distribution persists. It should be stressed that, though I ,  is not the same as I ,  their 
asymptotic behaviour under the limit df+ d must be similar. Therefore, it is expected 
that I ,  - rn(d-d f )  , where a is a constant unique to electrostatic problems. Not- 
withstanding this, however, I obtain the scaling relation for capacitance using a different 
argument. 

Consider a cluster subjected to a small electric field, E .  Charge polarisation will 
occur until an internal field E,, is set up that exactly balances the applied field, i.e., 1 El = 

1 E,n\. The induced dipole moment is therefore P = Q r ,  where Q is the polarised charge. 
If K be the polarisability of the cluster, then alternatively P = KE = KE,,. From elemen- 
tary electrostatics we know that E,, - ,o/.’-~ where p is the average polarised surface- 
charge density of one type (either positive or negative). One can write p = Q / t ,  - 
Q/rdc .  Therefore, 
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Equating the two expressions for P and using (2) we conclude that 

(3) K - y 4 - d + d ,  

For Euclidean clusters, d, = d - 1 and K - r3, a well known result in electrostatics. To 
find the capacitance we can alternatively write E,, = V/r ,  where V is the potential 
difference across opposite faces of the polarised cluster. Again, from Qr = KE,, - 
r 4 - d + d  cV/r we obtain, for the cluster capacitance C = Q/V,  

(4) 

( 5 )  

c -. y 2 - d + d ,  

Therefore, the scaling relation for the charging energy becomes 
E ,  - +2-d ,  

One can see that for Euclidean objects (d, = d - 1) the capacitance exponent becomes 
unity in all dimensions. 

Next we consider the hopping transport. It is agreed that the basic charge-transport 
mechanism is the same as the well known Mott variable-range-hopping between localised 
states in amorphous solids [ 161. Ambegaokar and co-workers [17] and Pollak [ 181 have 
developed its general theory by employing the concept of the critical percolation path. 
In order to apply this theory to the charge transport across a metal cluster system of 
discontinuous films, it is important to identify clearly the quantities analogous to the 
localised states, their energy and tunnelling distances. A localised state in an amorphous 
solid is characterised by an exponentially decaying wavefunction with a decay constant 
a. The spatial separations between them is much larger than the localisation length. For 
tunnelling purposes they are point states, and the tunnelling distances are ‘centre to 
centre’ separations between them. In case of metal clusters, the localisation length of a 
carrier is of the order of the cluster size, and tunnelling can occur only between the 
unshielded tips of the clusters. Thus the tunnelling distances are the narrowest intertip 
separations. The wavefunction decay in the tunnelling regions (i.e. between two unsh- 
ielded tips) is still characterised by an exponent decay constant a. The change in energy 
of a carrier in tunnelling from a cluster i to cluster j is essentially the difference in their 
charging energies ( E ,  - EcJ.  That is the analogue of localised state energies are the 
charging energies of the clusters. With this analogy in view the tunnelling conductance 
between a pair of clusters is given by [19] 

GI, = (yoe2/kT)exp[-2aR, - ( l ~ f I + I ~ , l + I E f  -E,/)/2kTl (6) 
where R,, is the closest sepaiation between unshielded tips; E,, E, are charging energies 
of clusters as given by (5); e is the electronic charge; k is Boltzman’s constant; and yo is 
a constant. Thus the conductance bonds between the clusters will be established via the 
narrowest tunnelling regions, and the critical percolation path characterised by the 
limiting conductance G, will be established in a manner similar to that described in detail 
by Ambegaokar and co-workers [19] and Pollak [18]. The relevant density of states is 
now the density of the charging states, D(E,) (per unit volume per unit energy). D(E,) 
will be obtained from the cluster size distribution and ( 5 )  as follows. 

Voss and co-workers [ 11 have demonstrated experimentally that the cluster-size 
distribution is compatible with the one given by percolation theory [ 171 and by Korcak- 
Mandelbrot law [20]. Percolation theory gives the average number of s-clusters (i.e. 
clusters consisting of s-sites) per lattice site n, - s-‘, where the exponent t obeys the 
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hyperscaling relation z - 1 = d/df. The spatial number density of the s-clusters will 
obviously be proportional to n,. Recalling the scaling relations s - rdf and E, = r-'with 
c = 2 - d + d,, one can obtain 

D(E,) n,(ds/dr)(dr/dE,) - E$/'-'. (7) 
I stress that while calculating D(E,) one should use n, instead ofp, = sn,. The latter gives 
the probability that a given site, say the origin, belongs to an s-cluster. p s  measures the 
fractional space covered by s-clusters, whereas the quantity which matters in hopping 
conduction is their number density. 

Since charging energies are independent of the sign of the charge, the Fermi level 
therefore lies midway between the positively and negatively charged states [9]. For 
kT 6 E, the probability of a cluster being charged is given by the Boltzmann factor 
exp( - E,/kT). Hence a given cluster can remain positively or negatively charged with 
equal probability, and the tunnelling probability from this cluster to a neighbouring 
neutral one will also be equal for either of its charge states. This means that on one side 
of the Fermi level hopping occurs from positively charged clusters to neutral clusters, 
and on the other side from negatively charged clusters to neutral ones in a statistically 
symmetric manner. The density of states on either side of the Fermi level will be given 
by (7). Under a small external field, i.e. e A V <  E,, where A V  is the potential drop 
between clusters, the current contributions from both the hopping processes will add. 
Pollak [18] and Hamilton [21] have shown that, for density of states of the form 
D(E)  - 1 El", the temperature exponent of macroscopic conductivity is given by x = 
(n + l)/(n + d + 1). Therefore, using n = d/c - 1 from (7), we immediately arrive at 

In effect, the dimension d in the variable-range-hopping formula with constant density 
of states in amorphous solids (x  = 1/(1 + d)) [16,18,19] is replaced by the charging 
exponent c = 2 - d + d,. 

Near the percolation threshold, the cluster boundaries are highly ramified anddf + d. 
In such conditions, as argued earlier, dc+ d - 2, therefore c+ 0, and x = 1. On the 
other hand, away from the threshold in the non-scaling regime, the cluster shapes are 
nearly Euclidean and d, = df+ d - 1. Therefore c-+ 1, and x = 1/2. For any inter- 
mediate situation 0 < c < 1, therefore, 4 < x < 1. This provides a general explanation 
for the range of values assumed by the temperature exponent x in different films. 

It is interesting to note that in cermets the metal grains are nearly Euclidean, 
therefore the conclusion x = 4 above can also provide an explanation for their con- 
ductivity behaviour. However, recall that (8) was derived by assuming a power-law 
distribution of grain sizes. This distribution is of course verified for clusters of discon- 
tinuous films, but the grain-size distribution in cermets is reported to be log-normal[22]. 
I suggest that the present conclusion can still be valid, for the following reason. 

Since the tunnelling occurs only from charged to neutral grains and the probability 
of smaller grains being charged is negligibly small due to the exp( - E,/kT)  dependence, 
conduction will therefore occur mainly via hopping among larger grains lying in the 
upper tail of the log-normal distribution. In this region the size distribution 

x = 1/(1 + c). (8) 

f ( r )  = ( 2 ~ t a ~ ) - ' / ~ ( 1 / r )  exp[ -(In r - In ro)2/2a2] (9) 

f ( r>  r-(1-lnro/202) (10) 

can be approximated as a power law 

for In ro < In r < 2a2, where the various terms have their usual meaning. This is SO 
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because (In r - In ro)' = (In r)2 - 2 In r In ro + (In r J 2 ,  exp[ -(In r)2/2a2] = r-('nr)/2u2 
and exp[(2 In r In ro)/202] = r21nr0/2u2 . Using these in (9),  one obtains 

f ( r>  = (2x02) -1/2 exp[ -(In r o ) 2 / 2 ~ 2 ~ r - ( 1 - l n r 0 / 2 ~ 2 ) - ( l n r - l n r ~ ) / 2 ~ 2 ,  

Under the condition that In r > In ro and (1 - In ro/2a2) + (In r - In ro)/2a2 one 
obtains (10). 

In brief, it is argued that the scaling relation usually assumed for the electrostatic 
charging energy of metal grains E, - 1/r will be in error if the grain shapes are irregular. 
For fractal grains a large fraction of the surface is electrostatically shielded. Assuming 
that the unshielded surface area tu is characterised by a new exponent d, as tu - rdc,  we 
obtain E, - l / r c  where c = 2 - d + d,, and 0 < c < 1. Taking this into account, and 
using the cluster size distribution n, - s-' given by percolation theory, it is shown that 
the fractional temperature exponent of the low-field DC conductivity of discontinuous 
filmsbecomesx = 1/(1 + c), i .e. , i  < x  < 1. Thisexplainstheobservedvaluesofx. Also, 
the possibility of explaining cermet conductivities as well, which showx = 4, is suggested. 
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